Citizen Microgrid

Steve Pullins

Co-Founder / Chief Strategy Officer

Green Energy Corp September 2013

Microgrid vs Traditional Supplier Roles

Criteria MEA/Shell IIT/Exelon Calpine ⁸ NextEra ⁹ US Avg.						
Criteria	WEA/Shell	III/Exelon	Calpine	Nextera	US Avg.	
Source Energy Intensity	3.8	6.6	7.3	8.0	9.1	
(mmBTU/MWh)	3.6	0.0	7.5	8.0	3.1	
CO ₂ Intensity	610	0	870	650	1330	
(lbs/MWh)	610	"	870	650	1330	
SO ₂ Intensity	0.3	0	0.0044	0.44	3.0	
(lbs/MWh)						
NOx Intensity	0.3	0	0.12	0.33	1.4	
(lbs/MWh)	0.3	"	0.12	0.33	1.4	
Water Consumption	> 400*	240*	100	220	> 400*	
(gallons/MWh)	>400*	240*	100	230	>400*	
Solid Waste Recycled						
(waste recycled/total	16%*	60%	0%*	28%*	65%	
waste)						
Renewable Energy	_			0	NI/A	
Credits (bonus points)	6	0	0	0	N/A	
PPI Rating Score	91	79	68	64	41	
(max 100)						
Percent Renewable	60%	40%	6%	13%	9%	

Table 3, Assessing Power Supply: Environment and Energy Efficiency, Perfect Power Institute, July 2012

Notes: Results adjusted for average system losses. MEA is the Marin Energy Authority contracting with Shell Energy. IIT is the Illinois Institute of Technology contracting with Exelon.

^{*}Numbers estimated from available data

⁸ Calpine (2010). Annual Report: A Generation Ahead, Today. www.calpine.com/docs/CPN_Annual_Report.pdf
⁹ NextEra Energy (2011). Sustainability Report 2011. http://www.nexteraenergy.com/pdf/sustain-report.pdf

Case Study: What if ConEd?

Compare 500 MW over 20 years	ConEd BAU	ConEd Microgrid	
Amount of microgrids		500 MW	
Reliability (avg customer outage minutes/year)	118	12	
Power Plant Capacity Factor	45.3%	83.2%	
Emissions (NO _X , SO _X , CO ₂)		532,727 Tons less	
Consumer Savings		\$2,091 M higher	
Distribution Marginal Cost	\$600/kW-year	<\$250/kW-year	

Case Study based data from an 11 MW industrial microgrid design in CT.

Microgrid Dispatch Operations

System can provide certain ancillary services to grid at certain times of the day.

750,000 s.f. 6 tower Engineering Center, 3,200 engineers, 3.5 MW summer day peak, 2.7 MW winter day peak

at ILLINOIS INSTITUTE OF TECHNOLOGY

Day in the Life – Engineering Center

Variable capacity is dispatchable (Smart)

Hourly dispatch to serve load

Variable Load and Variable Capacity 6.000 5.000 4.000 3.000 2.000 1.000 0.000 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 8 **Hour Ending** Summer Load Profile (MW in each hour) Variable Capacity Potential (MW)

~8% dispatchable

w/o impact

Can hourly dispatch remainder for ancillary services to grid

Some ancillary services do not hinder serving dispatchable load

Microgrid Energy Storage System

- Modes of Operation
 - Constant Charge
 - Constant Discharge
 - Peak Shaving
 - PV Smoothing
 - Load Shifting
 - VAr Control
 - Demand Response
 - Arbitrage

kW	kVAr	kVA					
0	500	500					
300	400	500					
400	300	500					
500	0	500					
400	-300	500					
300	-400	500					
0	-500	500					
-300	-400	500					
-400	-300	500					
-500	0	500					
-400	300	500					
-300	400	500					

Power & Energy Society®

